RAS BiologyБотанический журнал Botanical Journal

  • ISSN (Print) 0006-8136
  • ISSN (Online) 2658-6339

Development of several embryo sacs in ovule of Paeonia anomala (Paeoniaceae)

PII
S26586339S0006813625020041-1
DOI
10.7868/S2658633925020041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 110 / Issue number 2
Pages
159-184
Abstract
The article presents the results of the study of development of the ovule and female gametophyte in Paeonia anomala L. The possibility of the formation of several embryo sacs in one ovule due to the development of several megasporocytes of the multicellular sporogenous complex and their entry into meiosis is confirmed. From 1 to 4 megasporocytes can enter meiosis, if they are covered by callose. Most often, 2-3 tetrads of megaspores are formed, although further development usually occurs in one tetrad; the rest can remain intact until the late 4-nucleate embryo sac. Possible reasons for the development of a single embryo sac are discussed: competition between tetrads, disruptions in meiosis, mechanisms regulating the fate of cells and the program of their development. Some morphogenetic correlations in the development of the embryo sac and the surrounding structures of the ovule are revealed. In particular, it has been shown that the development of two embryo sacs at the late 4-nucleate stage correlates with partial or complete destruction of the nucellar cap, whereas during the development of one gametophyte it is preserved for a long time. The dynamics of starch in the nucellar tissues during the gametophyte development has been noted: its accumulation first in the cells of the basal part, where the formation of tetrads and a 2-nucleate embryo sac occurs, and then its highest concentration in the lateral parts of the parietal tissue surrounding the growing gametophyte.
Keywords
Paeonia Paeoniaceae семязачаток зародышевый мешок мегаспорогенез
Date of publication
01.02.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. [Batygina] Батыгина Т.Б. 1993. Эмбриоидогения – новая категория способов размножения цветковых растений. – Тр. Бот. ин-та им. В.Л. Комарова. 8: 15–25.
  2. 2. [Batygina] Батыгина Т.Б. 1999. Генетическая гетерогенность семян: эмбриологические аспекты. – Физиология растений. 46(3): 438–454.
  3. 3. Batygina T.B. 2002. Ovule and seed viewed from reliability of biological systems. – In: Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. Enfield (NH, USA). P. 214–217.
  4. 4. Carman J.G. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory and polyembryony. – Biol. J. Linn. Soc. 61: 51–94.
  5. 5. Carman J.G., Jamison M., Elliott E., Dwivedi K.K., Naumova T.N. 2011. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. – BMC Plant Biology. 11: 9. http://www.biomedcentral.com/1471-2229/11/9
  6. 6. Chen L.Z., Kozono T. 1994. Cytology and quantitative analysis of aposporous embryo sac development in guineagrass (Panicum maximum Jacq.). – Cytologia. 59: 259–260.
  7. 7. D’Amato F. 1946. Nuove ricerche embriologiche e cariologiche sul genere Euphorbia. – Nuovo Giorn. Bot. Ital. 53: 405–436.
  8. 8. Demesa-Arévalo E., Vielle-Calzada J.-P. 2013. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. – Plant Cell. 25(4): 1274–1287. https://doi.org/10.1105/tpc.112.106237
  9. 9. Dobeš C., Lückl A., Kausche L., Scheffknecht S., Prohaska D., Sykora C., Paule J. 2015. Parallel origins of apomixis in two diverged evolutionary lineages in tribe Potentilleae (Rosaceae). – Bot. J. Linn. Soc. 177(2): 214–229. https://doi.org/10.1111/boj.12239
  10. 10. Eriksen B., Fredrikson M. 2000. Megagametophyte development in Potentilla nivea (Rosaceae) from Northern Swedish Lapland. – Amer. J. Bot. 87(5): 642–651.
  11. 11. Flores E.M., Moseley M.F. 1982. The anatomy of the pistillate inflorescence and flower of Casuarina verticillata Lamarck (Casuarinaceae) – Amer. J. Bot. 69(10): 1673–1684. https://doi.org/10.2307/2442922
  12. 12. [Kaybeleva, Yudakova] Кайбелева Э.И., Юдакова О.И. 2022. Апомиксис у злаков флоры Саратовской области. – Бот. журн. 107(8): 766–780. https://doi.org/10.31857/S0006813622080087
  13. 13. [Kordyum] Кордюм Е.А. 1967. Цитоэмбриология семейства зонтичных. Киев. 176 с.
  14. 14. Leszczuk A., Domaciuk M., Szczuka E. 2018. Unique features of the female gametophyte development of strawberry Fragaria × ananassa Duch. – Scientia Horticulturae. 234: 201–209. https://doi.org/10.1016/j.scienta.2018.02.030
  15. 15. [Mandrik, Mentkovskaya] Мандрик В.Ю., Ментковская Е.А. 1977. Цитоэмбриологическое исследование некоторых популяций Potentilla erecta (L.) Hampe (Rosaceae) в Украинских Карпатах (Микроспорогенез. Дифференциация семяпочки и развитие женского гаметофита). – Бот. журн. 62(7): 1062–1073.
  16. 16. Modilewski J. 1909. Zur Embryobildung von Euphorbia procera. – Ber. Deutsch. Bot. Ges. 27(1): 21–26.
  17. 17. Modilewski J. 1911. Über die anomale Embryosack-entwicklung bei Euphorbia palustris L. und anderen Euphorbiaceen. – Ber. Deutsch. Bot. Ges. 29(7): 430–436.
  18. 18. Müntzing A. 1938. Note on heteroploid twin plants from eleven genera. – Hereditas. 24(4): 487–491. https://doi.org/10.1111/j.1601-5223.1938.tb03222.x
  19. 19. Musiał K., Kościńska-Pająk M., Antolec R., Joachimiak A.J. 2015. Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction. – Protoplasma. 252(1): 135–144. https://doi.org/10.1007/s00709-014-0654-8
  20. 20. Noher de Halac I., Harte C. 1977. Different patterns of callose wall formation during megasporogenesis in two species of Oenothera (Onagraceae). – Pl. Syst. Evol. 127: 23–38. https://doi.org/10.1007/BF00988016
  21. 21. Noher de Halac I., Harte C. 1985. Cell differentiation during megasporogenesis and megagametogenesis. – Phytomorphology. 35(3-4): 189–200.
  22. 22. Öztürk R., Ünal M. 2003. Cytoembryological studies on Paeonia peregrina L. – J. Cell and Mol. Biol. 2: 85–89.
  23. 23. [Pausheva] Паушева З.П. 1980. Практикум по цитологии растений. М. 255 с.
  24. 24. Piršelová B., Matušíková I. 2013. Callose: the plant cell wall polysaccharide with multiple biological functions. – Acta Physiol. Plant. 35: 635–644. https://doi.org/10.1007/s11738-012-1103-y
  25. 25. Qiu Y.L., Liu R.S., Xie C.T., Russell S.D., Tian H.Q. 2008. Calcium changes during megasporogenesis and megaspore degeneration in lettuce (Lactuca sativa L.). – Sex. Plant Reprod. 21: 197–204. https://doi.org/10.1007/s00497-008-0079-7
  26. 26. Renner O. 1921. Heterogamie im weiblichen Geschlecht und Embryosackentwicklung bei Oenotheren. – Zeitschr. Bet. 13: 609–621.
  27. 27. Rodkiewicz B. 1970. Callose in cell walls during megasporogenesis in angiosperms. – Planta. 93: 39–47.
  28. 28. Rodkiewicz B., Bednara J. 2002. Megasporogenesis. – In: Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. Enfield (NH, USA). P. 114–115.
  29. 29. Rodkiewicz B., Bednara J., Pora H. 1971. Alternative localization of the active megaspore in tetrads in Oenothera muricata. – Bull. Acad. Polon. Sci. Ser. Sci. biol. 19(10): 691– 694.
  30. 30. Rojek J., Kapusta M., Kozieradzka-Kiszkurno M., Majcher D., Gorniak M., Sliwinska E., Sharbel T.F., Bohdanowicz J. 2018. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). – Ann. Bot. 122(4): 513–539. https://doi.org/10.1093/aob/mcy114
  31. 31. Schnarf K. 1929. Embryologie der Angiospermen. Berlin. 690 p.
  32. 32. [Shamrov] Шамров И.И. 1997. Развитие семязачатка и семени у Paeonia lactiflora (Paeoniaceae). – Бот. журн. 82(6): 24–46.
  33. 33. [Shamrov] Шамров И.И. 2005. Транспорт метаболитов и возможные причины образования аберрантных семязачатков. – Бот. журн. 90(11): 1651–1675.
  34. 34. [Shamrov] Шамров И.И. 2008. Семязачаток цветковых растений: структура, функции, происхождение. М. 350 с.
  35. 35. [Shishkinskaya et al.] Шишкинская Н.А., Юдакова О.И., Тырнов В.С. 2004. Популяционная эмбриология и апомиксис у злаков. Саратов. 145 с.
  36. 36. Śnieżko R., Harte C. 1984. Polarity and competition between megaspores in the ovule of Oenothera hybrids. – Pl. Syst. Evol. 144: 83–97.
  37. 37. https://doi.org/10.1007/BF00986667
  38. 38. Sogo A., Noguchi J., Jaffré T., Tobe H. 2004. Pollen-tube growth pattern and chalazogamy in Casuarina equisetifolia (Casuarinaceae) – J. Plant Res. 117(1): 37–46. https://doi.org/10.1007/s10265-003-0129-z
  39. 39. Swamy B.G.L. 1948. A contribution to the life history of Casuarina. – Proc. Amer. Acad. Arts and Sci. 77(1): 3–32.
  40. 40. [Titova et al.] Титова Г.Е., Яковлева О.В., Жинкина Н.А., Гельтман Д.В. 2018. Развитие семени у некоторых видов секций Helioscopia и Esula подрода Esula рода Euphorbia (Euphorbiaceae). – Бот. журн. 103(11): 1355–1389. https://doi.org/10.7868/S0006813618110017
  41. 41. [Titova, Nyukalova] Титова Г.Е., Нюкалова М.А. 2021. Развитие зародышевого мешка у Euphorbia myrsinites и E. komaroviana (Euphorbiaceae). – Бот. журн. 106(5): 438–459. https://doi.org/10.31857/S0006813621050057
  42. 42. Treub M. 1891. Sur les Casuarinees et leur place dans le systeme naturel. – Annales du Jardin Botanique de Buitzenzorg. 10: 145–219.
  43. 43. [Vinogradova] Виноградова Г.Ю. 2013. Полиэмбриония у Allium schoenoprasum (Alliaceae). Происхождение зародышей. – Бот. журн. 98(8): 957–973. https://doi.org/10.1134/S1234567813080028
  44. 44. [Vinogradova] Виноградова Г.Ю. 2017. Морфогенез женских репродуктивных структур у видов Euphorbia (Euphorbiaceae), различающихся по типу развития зародышевого мешка. – Бот. журн. 102(8): 1060–1093.
  45. 45. [Vinogradova G.Yu., Zhinkina N.A.] 2021. Why does only one embryo sac develop in the Paeonia ovule with multiple archesporium? – Plant Biology. 23(2): 267–274. https://doi.org/10.1111/plb.13206
  46. 46. [Voronova, Gavrilova] Воронова О.Н., Гаврилова В.А. 2007. Апоспория у подсолнечника Helianthus annuus (Asteraceae). – Бот. журн. 92(10): 1535–1544.
  47. 47. Walters J.L. 1962. Megasporogenesis and gametophyte selection in Paeonia californica. – Amer. Jour. Bot. 49(7): 787–794. https://doi.org/10.2307/2439173
  48. 48. [Yakovlev, Ioffe] Яковлев М.С., Иоффе М.Д. 1957. Особенности эмбриогенеза рода Paeonia L. – Бот. журн. 42(10): 1491–1502.
  49. 49. [Yakovlev, Ioffe] Яковлев М.С., Иоффе М.Д. 1960. Мегаспорогенез у Paeonia anomala L. – В сб.: Вопросы эволюции, биогеографии, генетики и селекции. Сборник, посвященный 70-летию со дня рождения академика Н.И. Вавилова. М.–Л. С. 320–325.
  50. 50. [Yakovlev, Ioffe] Яковлев М.С., Иоффе М.Д. 1965. Эмбриология некоторых представителей рода Paeonia L. – В кн.: Морфология цветка и репродуктивный процесс у покрытосеменных растений. М.–Л. С. 140–176.
  51. 51. [Yudakova, Kaybeleva] Юдакова О.И., Кайбелева Э.И. 2014. Апоспория у представителей рода Koeleria Pers. – Бюлл. Бот. сада Саратовского гос. ун-та. 14: 154–161.
  52. 52. [Zhgenti] Жгенти Л.П. 1974. Цито-эмбриология некоторых кавказских видов рода Paeonia: автореферат диссертации на соискание ученой степени кандидата биологических наук. Тбилиси. 41 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library