RAS BiologyБотанический журнал Botanical Journal

  • ISSN (Print) 0006-8136
  • ISSN (Online) 2658-6339

GYNODIOECY OF LOMELOSIA SONGARICA (CAPRIFOLIACEAE) IN TAJIKISTAN

PII
S26586339S0006813625050039-1
DOI
10.7868/S2658633925050039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 110 / Issue number 5
Pages
460-474
Abstract
Gynodioecy in the herbaceous polycarpic plant, Lomelosia songarica, from Tajikistan was identified and is described here for the first time. Three populations were studied in 2022. The plants produce flowers of two types, bisexual and pistillate, occurring on individuals of three different variants: hermaphrodite (bisexual flowers only), female (pistillate flowers only), and gynomonoccious (bisexual and pistillate flowers). The marginal flowers in floral units are irregular (transversely zygomorphic), the median ones are almost regular (actinomorphic). Two types of bisexual flowers have been identified, differing in the degree of androecium development: 1) all four stamens are fertile and produce viable pollen; 2) partially androsterile, i.e., one, two, or three stamens are sterile due to incompletely developed pollen, in this case the anthers remain closed. In pistillate flowers, rudiments of the androecium are preserved, represented by staminodes which produce no pollen. Bisexual flowers are larger than pistillate ones by most of the studied parameters. There are two types of L. songarica populations: monomorphic (consisting only of hermaphrodite individuals) and heteromorphic (gynodioecious). In the gynodioecious population, the frequency of hermaphrodite, female and gynomonoccious individuals was subequal (33.3%). The article addresses the adaptive significance of the gynomonoccious individuals of this species serving as an alternative to strictly female individuals in light of the presence of exclusively cross-pollination due to strict intra- and interfacial protandry and synchronicity of flowering of the floral units within synflorescences.
Keywords
гинодиэция гиномоноэция Lomelosia songarica Таджикистан половой спектр
Date of publication
08.04.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Alatalo J.M., Molau U. 2001. Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). — Nord. J. Bot. 21(4): 365–372. https://doi.org/10.1111/j.1756-1051.2001.tb00780.x
  2. 2. Anisimova I.N. 2020. Structural and functional organization of genes that induce and suppress cytoplasmic male sterility in plants. — Russ. J. Genetics. 56(11): 1239–1249. https://doi.org/10.31857/S0016675820110028
  3. 3. Barrett S.C.H. 1992. Gender variation and the evolution of dioccy in Wurmbea dioica (Liliaceae). — J. Evol. Biol. 5(3): 423–444. https://doi.org/10.1046/j.1420-9101.1992.5030423.x
  4. 4. Barrett S.C.H., Hough J. 2013. Sexual dimorphism in flowering plants. — J. Exp. Bot. 64(1): 67–82. https://doi.org/10.1093/jxb/ers308
  5. 5. Botov G.K., Godin V.N. 2025. Gyrodioecy in Knautia arvensis (Caprifoliaceae). — Bot. Zhurn. 110(1): 71–90. https://doi.org/10.31857/S0006813625010049
  6. 6. Buide M.L., del Valle J.C., Castilla A.R., Narbona E. 2018. Sex expression variation in response to shade in gynodioecious-gynomonoccious species: Silene littorea decreases flower production and increases female flower proportion. — Envir. Exper. Bot. 146: 54–61. https://doi.org/10.1016/j.envexpbot.2017.10.016
  7. 7. Chukavina A.P. 1985. Some Peculiar features of flora and vegetation of the salt-mountain Khodzhamumin (Southern Tajikistan). — Bot. Zhurn. 70(5): 624–632.
  8. 8. Darwin C. 1877. The different forms of flowers on plants of the same species. London. 352 p.
  9. 9. Delannay X. 1978. La gynodioécie chez les Angiosperms. — Naturalistes Belges. 59(8-9): 223–237.
  10. 10. Demyanova E.I. 1981. A contribution to the study of the gynodioecy in the genus Dianthus (Caryophyllaceae). — Bot. Zhurn. 66(1): 65–74.
  11. 11. Demyanova E.I. 1985. Distribution of gynodioecy in flowering plants. — Bot. Zhurn. 70(10): 1289–1301.
  12. 12. Demyanova E.I. 2013. On the sexual polymorphism of some androdioecious plants. — Bot. Zhurn. 98(9): 1139–1146.
  13. 13. Demyanova E.I., Ponomarev A.N. 1979. Sexual structure of natural populations of gynodioecious and dioccious plants in Trans-Ural territories. — Bot. Zhurn. 64(7): 1017–1024.
  14. 14. Dufay M., Lahiani E., Brachi B. 2010. Gender variation and inbreeding depression in gynomonoccious Silene nutans (Caryophyllaceae). — Inter. J. Plant Sci. 171(1): 53–62. https://doi.org/10.1086/647916
  15. 15. Farinati S., Draga S., Betto A., Palumbo F., Vannozzi A., Lucchin M., Barcaccia G. 2023. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. — Frontiers in Plant Science. 14: 1223861. https://doi.org/10.3389/fpls.2023.1223861
  16. 16. Fedorov Al.A., Artyushenko Z.T. 1975. Organographia illustrata plantarum vascularum. Flos. Leningrad. 351 p.
  17. 17. Fleming T.H., Maurice S., Hamrick J.L. 1998. Geographic variation in the breeding system and the evolutionary stability of trioecy in Pachycereus pringlei (Cactaceae). — Evol. Ecol. 12(3): 279–289. https://doi.org/10.1023/a:1006548132606
  18. 18. Glazunova K.P., Dlusskiy G.M. 2007. Interrelation between flower structure and pollen vector composition in some Dipsacaceae and Asteraceae with externally similar anthodia. — Zhurn. Obsh. Biol. 68(5): 361–378.
  19. 19. Godin V.N. 2002. Sexual structure of coenopopulations of Pentaphylloides fruticosa (Rosaceae) in natural conditions of Mountain Altai. — Bot. Zhurn. 87(9): 92–99.
  20. 20. Godin V.N. 2008. Sexual structure of Potentilla fruticosa (Rosaceae) coenopopulations in the Altai-Sayan Mountain region. — Bot. Zhurn. 93(9): 1423–1444.
  21. 21. Godin V.N. 2019. Distribution of gynodioecy in APG IV system. — Bot. Zhurn. 104(5): 669–683. https://doi.org/10.1134/S0006813619050053
  22. 22. Godin V.N. 2020. Distribution of gynodioecy in flowering plants. — Bot. Zhurn. 105(3): 236–252. https://doi.org/10.31857/S0006813620030023
  23. 23. Godin V.N. 2024. Trioecy in Ranunculus auricomus (Ranunculaceae). — Bot. Zhurn. 109(6): 600–610. https://doi.org/10.31857/S0006813624060058
  24. 24. Godin V.N., Astashenkov A.Y., Cheryomushkina V.A. 2023. Gynodioecy in Nepeta gontscharovii (Lamiaceae). — Bot. Zhurn. 108(2): 155–162. https://doi.org/10.31857/S0006813623020047
  25. 25. Godin V.N., Astashenkov A.Y., Cheryomushkina V.A., Bobokalonov K.A. 2024. Gynodioecy of Origanum vulgare ssp. gracile (Lamiaceae) in Tajikistan. — Nord. J. Bot. 2024(1): e04148. https://doi.org/10.1111/njb.04148
  26. 26. Jeon Y.-Ch., Moon H.-K., Kong M.-J., Hong S.-P. 2024. Floral dimorphism of Elsholtzia angustifolia (Loes.) Kitag. (Lamiaceae). — Flora. 319: 152583. https://doi.org/10.1016/j.flora.2024.152583
  27. 27. Kamelin R.V. 1973. An account to the knowledge of the flora of Nuratau mountains. — Bot. Zhurn. 58(5): 625–638.
  28. 28. Kamelin R.V., Tokmatchova N.D., Chalimov A. 1989. Calophaca grandiflora (Fabaceae) in vegetational cover of the Darvaz region. — Bot. Zhurn. 74(5): 702–713.
  29. 29. Kamelin R.V., Khasanov F.O. 1987. Vertical belts in the vegetative cover of the Kugitang mountain range (south-west Pamir-Alai). — Bot. Zhurn. 72(1): 49–58.
  30. 30. Kamelina O.P., Yakovlev M.S. The development of anther and microgametogenesis in representatives of the families Dipsacaceae and Morinaceae. — Bot. Zhurn. 61(7): 932–945.
  31. 31. Karimova V.V. 1988. Dipsacaceae. — In: Flora of the Tajik SSR. Vol. IX: Rubiaceae – Asteraceae (including the Echinopsideae). Leningrad. P. 122–133.
  32. 32. Kaul M.L.H. 1988. Male Sterility in higher plants. — In: Monographs on Theoretical and Applied Genetics. Springer. 1005 p. https://doi.org/10.1007/978-3-642-83139-3
  33. 33. Lasa J.M., Bosemark N.O. 1993. Male sterility. — In: Plant Breeding. Plant Breeding Series. P. 213–228. https://doi.org/10.1007/978-94-011-1524-7_15
  34. 34. Mamut J., Cheng J., Tan D., Baskin C.C., Baskin J.M. 2022. Effect of hermaphrodite–gynomonoccious sexual system and pollination mode on fitness of early life history stages of offspring in a cold desert perennial ephemeral. — Diversity. 14(4): 268. https://doi.org/10.3390/d14040268
  35. 35. Mayer V. 2016. Dipsacaceae (inclusive Triplostegia). — In: Kadereti J., Bittrich V. (eds). Flowering Plants. Eudicots. The Families and Genera of Vascular Plants. 14: 145–163. https://doi.org/10.1007/978-3-319-28534-4_11
  36. 36. Morris W., Doak D. 1998. Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. — Amer. J. Bot. 85(6): 784–793. https://doi.org/10.2307/2446413
  37. 37. Nilsson E., Ågren J. 2006. Population size, female fecundity, and sex ratio variation in gynodioecious Plantago maritima. — J. Evol. Biol. 19(3): 825–833. https://doi.org/10.1111/j.1420-9101.2005.01045.x
  38. 38. Oak M.K., Song J.H., Hong S.P. 2018. Sexual dimorphism in a gynodioecious species, Aruncus aethusifolius (Rosaceae). — Plant Syst. Evol. 304(4): 473–484. https://doi.org/10.1007/s00606-018-1493-4
  39. 39. Ponomarev A.N., Demyanova E.I. 1975. To the study of gynodioecy in plants. — Bot. Zhurn. 60(1): 3–15.
  40. 40. Sennikov A.N., Tojibaev K.Sh., Karimov F.I. 2019. Caprifoliaceae Juss. — In: Flora of Uzbekistan. 3: 47–96.
  41. 41. Sokal R.R., Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 4th edition. New York. 937 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library